Section B

Note : Attempt all the questions.

11. (a) Find : $A^{2} - 12A + 5I,$ where, $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix}.$

- (b) Find inverse of the matrix :
 - $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 5 & 0 \\ 2 & 4 & 3 \end{bmatrix}$

Or

(a) Obtain the value of x from the equation : $\tan(90^\circ + A)\sin A + \csc(90^\circ + A)$

 $+x\cot(90^{\circ}+A)=0$

(b) Find the equation of a line which cuts off an intercept of 4 units on negative direction of the *y*-axis and makes an angle of 120° with the positive direction of *x*-axis. 6+6

J-0403

4

Roll No. E

Exam Code : J-19

Subject Code—0403

M.C.A. (First Year) EXAMINATION

(5 Years Integrated Course)

(Batch 2009 Onwards)

MATHEMATICS-I

MCA-103

Time : 3 Hours

Maximum Marks: 70

Section A

Note : Attempt any *Seven* questions. 7×5=35

1. Solve :

$$3x^2 - 2x - \sqrt{3x^2 - 2x + 4} = 16$$

2. If $A = \begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 2 & -3 \\ 5 & 1 \end{bmatrix}$, find a matrix C

such that :

$$2\mathbf{A} + \mathbf{B} + \mathbf{C} = \mathbf{0}$$

(3-94-1-0119) J-0403

P.T.O.

3. Solve using Cramer's rule :

$$x + y + z = 6$$
$$x - y + z = 2$$
$$2x + y - z = 1$$

4. Prove that :

$$\frac{\sin\theta}{1+\cos\theta} + \frac{1+\cos\theta}{\sin\theta} = 2 \ \text{cosec} \ \theta$$

- 5. (a) Find the area of the triangle whose vertices are (4, 4), (3, -2), (-3, 16).
 - (b) Find the value of K if the slope of the line joining (-8, 11) and (2, K) is $-\frac{4}{3}$.

6. Find
$$\frac{dy}{dx}$$
 where $y = \sqrt{x^2 - 1} + \frac{1 - \sqrt{x}}{1 + \sqrt{x}}$

7. Evaluate :

$$\int x \log 2x \, dx$$

2

J-0403

8. Solve the differential equation :

$$x(1+y^2)dx + y(1+x^2)dy = 0$$

9. Find median for the following data :

Class Interval	Frequency
0-10	4
10-20	8
20-30	20
30-40	12
40-50	6

- 10. Two unbiased dice are thrown simultaneously.Find the probability of :
 - (i) getting a multiple of 3 as the sum.
 - (ii) not getting the same number on the dice.
 - (iii) an even number on the first dice and an odd number on the second dice.
- (3-94-2-0119) J-0403 3 P.T.O.

50-60	14
60-70	10
70-80	15
80-90	25

Or

(a) Obtain the coefficient of correlation for the data :

x	У
10	18
14	12
18	24
22	6
26	30
30	36

(b) Obtain mean and variance for a Binomial distribution. 6+5

12. (a) Find
$$\frac{dy}{dx}$$
 if $y = a(1 - \cos \theta), x = a(\theta + \sin \theta)$
at $\theta = \frac{\pi}{2}$.

(b) Evaluate :

(3-94-3-0119) J-0403

$$\int \frac{dx}{(x-3)(x-4)}$$

Or

Solve the following differential equation :

(a)
$$\frac{dy}{dx} = \frac{x+y+1}{x+1}$$

(b) $\frac{dy}{dx} = (4x+y+1)^2$. 6+6

13. Calculate mean, median and mode for the following data :

Class	Frequency
10-20	4
20-30	12
30-40	40
40-50	20

5

P.T.O.

J-0403

6