_

Mathematics - II

2015

Time: 3 hours

Full Marks: 100

Candidates are required to give their answers in their own words as far as practicable.

Answer **Eight** questions, selecting at least one from each Group.

Group - A

1. a) State and prove Euler's theorem on homogeneous function of two variables.

(1-
$$x^2$$
) $y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$

- 2. a) Expand log(1 + tan x) in ascending powers of x using Maclaurin's series.
 - b) Evaluate $\lim_{x\to 0} (\sin x)^{\tan x}$

GD-478

(Tum over)

- 3. a) For the Pedal curve p=f(r), prove that $\rho = r \frac{dr}{dp} .$
 - b) Show that the curve represented by $\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2$ for different values of n, have a common tangent at the point (a,b). Find the equation of common tangent.

Group - B

a) Evaluate any two of the following :

$$i) \int \frac{x^2 - 1}{x^4 + 1} dx$$

ii)
$$\int \frac{\cos x}{2\sin x + 3\cos x} dx$$

iii)
$$\int_0^{\pi/4} \log(1 + \tan \theta) d\theta$$

b) Find ab-initio value of $\int_a^b x^2 dx$.

GD-478

(2) T.D.C. Part-II (Sub.)X Voc.

https://www.brabuonline.com

r) Go

https://www.brabuonline.com

https://www.brabuonline.com

https://www.brabuonline.com

$$I_n + I_{n-2} = \frac{1}{n-1}$$
.

- b) Find the perimeter of the loop of the curve $9y^2 = (x-2)(x-5)^2$
- 6. a) Prove that (n) = [n-1].
 - b) Find the area of loops of the curve $v^2 = x(x-1)^2.$

Group - C

7. Solve any two of the following:

a)
$$\frac{dy}{dx} = \sin(x + y) + \cos(x + y)$$

b)
$$ydx - xdy = \sqrt{x^2 - y^2} dx$$

c)
$$(1+x^2)\frac{dy}{dx} + y = \tan^{-1} y$$

$$d) x \frac{dy}{dx} + y^2 = y^2 \log x$$

GD-478

(3)

(Turn over)

- a) Find the orthogonal trajectories of the family of parabola y² = 4ax for different values of a.
 - b) Solve any one ozf the following:

$$i) \quad y = px + p - p^2$$

$$ii) \quad p^2y + 2px = y$$

9. Solve any two of the following:

a)
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 3y = 2e^{3x}$$

b)
$$(D^2 + D + 1)y = \sin 2x$$

c)
$$(D^2 - 2D + 1)y = xe^x$$

d)
$$(D^3 + 1)y = x^3 + \sin x$$

Group - D

10. a) Prove that
$$\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$$
.

b) If \vec{a} , \vec{b} , \vec{c} are three non-coplanar vectors, then prove that the vectors $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$, $\vec{c} + \vec{a}$ are also non-coplanar.

GD-478

https://www.brabuonline.com

https://www.brabuonline.com

(4) T.D.C. Part-II (Sub.)X Voc

https://www.brabuonline.com

GD-478

- 11. a) Define curl of a vector field. Give the physical significance of curl of a vector field.
 - b) Evaluate $\frac{d}{dt} \left[\vec{r} \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} \right]$.
- 12. a) Prove that $\nabla \cdot (\phi \vec{u}) = \phi \nabla \cdot \vec{u} + \vec{u} \cdot (\nabla \phi)$ where ϕ is scalar point function and \vec{u} is vector point function.
 - b) If $\phi = x^3 + y^3 + z^3 3xyz$, find curl (grad ϕ).

Group - E

- 13. a) Obtain the necessary and sufficient conditions for the equilibrium of a system of coplanar forces acting on a rigid body.
 - b) Forces P. Q. R act along the lines x=0, y=0and $x\cos\theta + v\sin\theta = p$, the axes being rectangular. Find the magnitude of resultant and equation of its line of action.
- 14. a) Which forces can be omitted in forming the equation of virtual work?

https://www.brabuonline.com

https://www.brabuonline.com

(5) (Turn over)

- b) Six equal rods AB, BC, CD, DE, EF and FA are each of weight w and are freely jointed their extremities so as to form a hexagon. The rod AB is fixed in a horizontal position and the middle points of AB and DE are jointed by a string. Prove that the tension in string is thrice the weight of each rod.
- a) State and explain Hooke's law. Find the work done in extending a light elastic string to double its length. https://www.brabuonline.com
 - b) A particle rests in equilibrium under the attraction of two centres of force which attract directly as the distance, their attractions per unit mass at unit distance being μ and μ' . The particle is slightly displaced towards one of them; show that the time of small

oscillation is
$$\frac{2\pi}{\sqrt{\mu + \mu'}}$$
.

- 16. a) Find the radial and transverse acceleration of a particle moving in a plane curve.
 - b) An insect crawls at a constant rate u along the spoke of a cartwheel of radius a, the cart is moving with a constant velocity v. Find the acceleration along and perpendicular to the spoke.

GD-478

(6)T.D.C. Part-II (Sub.)X Voc. https://www.brabuonline.com

https://www.brabuonline.com