B.E./B. Tech. 1st Semester Examination.

December-2013

PHYSICS-I

Paper-Phy-101-E

[Maximum marks: 100 Time allowed: 3 hours]

Note: Attempt five questions in all, selecting at least two questions from each part.

Part-A

- What do you understand by superposition principle and interference of light? Explain with the help of a neat diagram the formation of Newton's ring by reflected light. Also, prove that the diameters of the dark rings are proportional to the square root of the natural 20 number.
- Distinguish between Fraunhofer and Fresnel type of 2. diffraction. Discuss the phenomenon of Fraunhofer diffraction at a single slit and show that the relative intensities of the maxima are nearly in the 20 ratio 1:4/9 π^2 : 4/25 π^2 : 4/49 π^2 .
- What is double refraction? Describe the construction 3. and working of Nicol prism. How it is used as analyser alaminan 9

4. Discuss the essential requirement for producing laser action. Describe a He-Ne laser. 20

Part-B

	fit	Fall (=D		
5.	Explain express	plain single mode and multimode fibers. Derive an ression for acceptance angle and numerical aperture		
÷	in optic	al fiber.	20	
6.	Obtain an expression for local field in dielectric and thus find the Clausius-Mossotti relation. 20			
-	thus in	d the Clausius-Mossotti rotation.		
7.	Write short notes on the following:			
:	(a) T	ime dilation	4	
	(b) L	orentz-Fitzgerld contraction	4	
	(c) N	lass-energy equivalence	4	
	(d) V	ariation of mass with velocity	4	
÷.	(e) I	orentz transformation	4	
8.	Write	short notes on the following:	**	
	(a) N	Meissner effect	4	
	(b) (Critical current and critical field	of a	
		superconductor	4	
	(c)	Type I and Type II superconductors	4	
· ·	(d)	Cooper pair	4	
	(e)	BCS theory of superconductivity	4	