BBA-406(N)

B. B. A. (Fourth Semester) **EXAMINATION, May, 2018**

(New Course)

Paper Sixth

OPERATIONS RESEARCH

e Hours

[Maximum Marks: 70

mpt questions from all Sections as directed.

he candidates are required to answer only in rial order. If there are many parts of a question, swer them in continuation.

Section-A

(Short Answer Type Questions)

lestions are compulsory. Each question carries ks.

application areas of Operations scribe earch.

ite notes on any three Operations Research miques.

v do von color o

http://csjmuonline.com

http://csjmuonline.com

- (D) Draw the graphs of the following in equations:
 - (i) $2x+5y \ge 12$
 - (ii) $x 3y \le 9$
- Write methods to obtain an initial feasible solution for a Transportation problem.
- What do you mean by unbalanced assignment problem?
- (G) What do you mean by EMV and EOL?
- What do you mean by criterion of Optimism?
- Write a short note on PERT and CPM techniques.
- Give an example of Burst event in network.

Section-B

(Long Answer Type Questions)

Note: Attempt any two questions. Each question carries 10 marks. http://csimuonline.com

- 2. Explain the concept, scope and tools of OR as applicable to Business and Industry.
- 3. Solve the following L. P. P. graphically:

Maximize:

$$z = x_1 + 2x_2$$

Subject to:

$$2x_1 + x_2 \le 70$$

$$x_1 + x_2 \le 40$$

$$x_1 + 3x_2 \le 90$$

and $x_1, x_2 \ge 0$.

4. Solve the following L. P. P. by using Simplex method: Maximize:

$$z = x_1 + x_2 + 3x_3$$

(B-58)

http://csjmuonline.com

[3]

http://csjmuonline.com

$$3x_1 + 2x_2 + x_3 \le 3$$

$$2x_1 + x_2 + 2x_3 \le 2$$

and $x_1, x_2, x_3 \ge 0$.

5. Find an optimal solution to following the Transportation problem:

Destination

Sources	x	Y	Z	Supply
A	2	7	4	50
В	3	3	7	70
С	5	4	1	80
D	1	6	2	140
Demand	70	90	180	340

Section-C

(Long Answer Type Questions)

Note: Attempt any two questions. Each question carries 10 marks.

6. Solve the following minimal assignment problem:

	•
10.71	91

		I	2	3	4	5	
	. I	12 7	8	7	15	14	
	'n	7	9	17	14	10	
Job	Ш	9	6	12	6	7	
	IV .	7	6	14	6	10	
	. V	9.	6	12	10	6	

(B-58)

[5]

- Draw the network diagram and find the project completion time.
- Calculate total float for each activity.
- 9. Write short notes on any two of the following:
 - V. A. M.
 - Three Time Estimates
 - Artificial Variable
 - Critical Path

http://csjmuonline.com

http://csjmuonline.com

http://csjmuonline.com Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्ये,

BBA-406(N) Paytm or Google Pay 社

(B-58)

http://csjmuonline.com

http://csimuonline.com