Roll No.

0726

M. A./M. Sc. (Previous) EXAMINATION, 2022

MATHEMATICS

Paper Third

(Topology)

Time: Three Hours] [Maximum Marks: 90

Note: Attempt questions from all, Sections as directed.

Inst.: The candidates are required to answer only in serial order. If there are many parts of a question, answer them in continuation.

Section—A

(Short Answer Type Questions)

Note: All questions are compulsory. Each question carries 3 marks.

- 1. (A) Let X be a metric space. Then any finite intersection of open sets in X is open.
 - (B) In a metric space every convergent sequence is a Cauchy sequence.
 - (C) Find all possible topologies for the set $X = \{1, 2, 3, 4\}$.
 - (D) Show that every T_2 -space is a T_1 -space.
 - (E) If (X, T) be a topological space, then prove that the identity mapping:

$$f: X \to X: f(x) = x \quad \forall x \in X$$

is continuous.

- (F) Continuous image of a connected space is connected.
- (G) Closed subsets of compact sets are compact.

- (H) Every second countable space is first countable.
- (I) The product space of Hausdorff space is Hausdorff.
- (J) Define the following with example:
 - (i) Nets
 - (ii) Convergence of net

Section-B

(Long Answer Type Questions)

Note: Attempt any two questions. Each question carries 15 marks.

- 2. Let X be a complete metric space and let Y be a subspace of X. Then Y is complete if and only if it is closed.
- 3. State and prove Baire category theorem.
- 4. State Zermelo's postulate and prove that Zermelo's postulate is equivalent to the axiom of choice.
- Let X be a topological space. Then (i) any intersection of closed sets in X is closed and (ii) any finite union of closed sets in X is closed.

Section—C

(Long Answer Type Questions)

Note: Attempt any two questions. Each question carries 15 marks.

- 6. Let (X, T) and (Y, V) be topological spaces and let f be a bijective mapping (i. e. one-one onto of X to Y. Then the following statements are equivalent: https://www.csjmuonline.com
 - (i) f is a homeomorphism.
 - (ii) f is continuous and open.
 - (iii) f is continuous and closed.
- 7. A subset E of R is connected if and only if it is an interval in particular R is connected.
- 8. State and prove Lindelof's theorem.
- 9. A topological space (X, T) is Hausdorff if and only if every net in X can converges to at most one point.