STATISTICS

(Honours)

(2nd Semester)

Course No.: STSHCC-202T

(Algebra)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

Answer any ten questions:

2×10=20

1. If a, b, c are the roots of $x^3 + px^2 + qx + r$, then find the value of

$$\sum \frac{b^2+c^2}{bc}$$

2. Determine a polynomial whose roots are -3, -1, 4, 5.

22J/1084

(Turn Over)

https://www.assampapers.com

- 3. Find the condition that the cubic equation $x^3 px^2 + qx r = 0$ should have roots in GP.
- Define vector space and basis of a vector space.
- Define linear dependence and linear independence of vector.
- 6. Show that

 $S = \{(1, 2, 4), (1, 0, 0), (0, 1, 0), (0, 0, 1)\}$

the set is linearly dependent sub-space of the vector space $V_3(R)$, where R is the field of real numbers.

- 7. Define idempotent matrix and nilpotent matrix.
- 8. Define trace of a matrix.
- Define Hermitian and skew-Hermitian matrices.
- 10. Define minors and cofactors.
- 11. Define determinant of a square matrix.
- 12. Define inverse of a matrix.

22J/1084

(Continued

- 13. Define rank of a matrix.
- 14. Define echelon form of a matrix.
- Define characteristic roots and characteristic vectors.

SECTION-B

Answer any five questions:

6×5=30

- (a) Show that an algebraic equation of degree n has n roots.
 - (b) Solve by Cardan's method $x^3 + 6x^2 - 12x + 32 = 0$
- 17. If sum of two roots of $x^3 + px^2 + qx + r$ is equal to the third root, then show that $p^3 4pq + 8r = 0$.
- (a) Show that the three vectors (1, 1, -1),
 (2, -3, 5) and (-2, 1, 4) of R³ are linearly independent.
 - (b) If $\alpha_1 = (1, 2, -1)$, $\alpha_2 = (-3, -6, 3)$, $\alpha_3 = (2, 1, 3)$ then show whether the system is linearly dependent or independent.

22J/1084

(Turn Over)

- 19. (a) State the general properties of vector space.
 - (b) Determine whether or not the following vectors form a basis of R^3 : $\alpha_1 = (1, 1, 2), \alpha_2 = (1, 2, 5), \alpha_3 = (5, 3, 4)$
- 20. (a) Let A and B be two square matrices of order n and λ be a scalar. Then prove that tr(AB) = tr(BA).
 - (b) Prove that a necessary and sufficient condition for a matrix A to be symmetric is that A and A' are equal.
 - Show that every square matrix A can be uniquely expressed as P+iQ, where P and Q are Hermitian matrices.
 - 22. (a) Show that

$$\Delta = \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (a - b)(b - c)(c - a)$$

(b) Prove that

$$\Delta = \begin{vmatrix} x & a & a & a \\ a & x & a & a \\ a & a & x & a \\ a & a & a & x \end{vmatrix} = (x+3a)(x-a)^3$$

22J/1084

(Continued

3

2

- 23. (a) If A, B be two n-rowed non-singular matrices, then prove that AB is also non-singular and $(AB)^{-1} = B^{-1}A^{-1}$.
 - (b) Solve the following system of linear equations with the help of Cramer's rule:

3

3

3

$$x+2y+3z=6$$
$$2x+4y+z=7$$
$$3x+2y+9z=14$$

- 24. State and prove Cayley-Hamilton theorem.
- 25. (a) Show that the two matrices A, C⁻¹AC have the same characteristic roots.
 - (b) Prove that if the characteristic roots of A are $\lambda_1, \lambda_2, ..., \lambda_n$, then the characteristic roots of A^2 are $\lambda_1^2, \lambda_2^2, ..., \lambda_n^2$.

* * *