Paper II: Abstract Algebra

1. How many times $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix}$ should be multiplied by itself to get

 $\left(\begin{array}{rrr} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{array}\right).$

UPadda.com

- (a) 2 (b) 3 (c) 4 (d) None.
- 2. $(R, +, \cdot)$ is a ring of real nos and $(Q, +, \cdot)$ is sub ring of rational nos then $(Q, +, \cdot)$ is an ideal. True/False
- 3. The polynomial over the ring of $(I_8, +_8, \times_8)$ are $f(x) = 2 + 6x + 4x^2$, $g(x) = 2x + 4x^2$. Then degree of f(x) + g(x) is:
 - (a) 2 (b) 1 (c) 0 (d) None of these.
- 4. $V_3(R) = \{(a, b, c) : a, b, c \in R\}$ be a vector space and $W_1 = \{a, 0, 0\} : a \in R\}$, $W_2 = \{0, b, 0\} : b \in R\}$ be sub-spaces of $V_3(R)$ then $W_1 \cup W_2$ is sub-space of $V_3(R)$.

 True/False
- 5. Permutation $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 1 & 4 & 8 & 6 & 9 & 7 & 5 \end{pmatrix}$ = product of permutations = (4) (6) (123) (5879) True/False
 - 6. Subset $S = \{(100), (110), (111), (010)\}$ of \mathbb{R}^3 (R) is basis set.

True/False

- 7. Any orthogonal set of non-zero vectors in an inner product space V
- 8. If T be linear transformation from vector space u(F) into vector space v(F) with u is finite dimensional. Then (rank T) + (nullity T) = ?
- 9. If F is a field then the set F(x) of all polynomials over F is (a field/an integral domain).
- 10. If V(F) be an inner product space and two of its vectors x, y are such that $|(x, y)| = ||x|| \cdot ||y||$. Then x, y are linearly dependent/linearly independent.

 Section—B $1 \times 5 = 5$; $2 \times 5 = 10$
- 1. If α and β are vectors in a real inner product space and if $\|\alpha\| = \|\beta\|$ then $(\alpha \beta)$ and $(\alpha + \beta)$ are orthogonal.
- 2. Show that the mapping $T: V_3(R) \to V_2(R)$ defined as a linear transformation from $V_3(R)$ into $V_2(R)$.

$$T(a_1, a_2, a_3) = (3a_1 - 2a_2 + a_3, a_1 - 3a_2 - 2a_3).$$

- 3. Define normal subgroup. If H is sub group of index 2 in a group G, then H is a normal subgroup of G.
- 4. Let V be the vector space C(R), show that the set S = [(1, 0), (0, 1), (i, 0), (0, i)] is a basis for V.
- 5. Prove the necessary conditions for a vector space V(F) to be direct sum of its two subspaces W_1 and W_2 are that : (i) $V = W_1 + W_2$ and (ii) $W_1 \cap W_2 = (0)$.

- 1. Every finite-dimensional inner product space has an orthonormal basis.
- 2. (a) If W₁ and W₂ are two subspaces of a finite dimensional vector space V(F), then dim $(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim (W_1 \cap W_2)$.
- (b) Show that mapping T: $V_2(R) \rightarrow V_3(R)$ given by T (a, b) = [a + b,a-b, b) is a linear Transform from $V_2(R)$ into $V_3(R)$.
- 3. (a) Prove that: Every finite group G is isomorphic to a permutation group.
- (b) If V(F) is a finite dimensional vector space, then any two bases of V have same nos of elements.
 - 4. Prove that:

UPadda.com

- (a) The centre Z of a group G is a normal subgroup of G.
- (ii) Prove that ring of integers is an Euclidean ring.
- 5. (a) Show that vectors (1, 2, 1) (2, 1, 0) (1, -1, 2) form a basis of \mathbb{R}^3 .
- (b) Prove that in n permutation on n symbols, $\frac{n}{2}$ are even

permutation and $\frac{n}{2}$ are odd permutation.