PG-377 PGDMAT-11/ MMS-15

P.G. DIPLOMA IN MATHEMATICS EXAMINATION – JUNE 2019.

ALGEBRA

Time : 3 hours

Maximum marks : 75

PART A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

- 1. Prove that a non-empty subset H of the group G is a subgroup of G if and only if
 - (a) $a, b \in H$ implies that $\dot{a}\dot{b} \in H$.
 - (b) $a \in H$ implies that $a^{-1} \in H$.
- 2. If G is a finite group and $a \in G$, then prove that O(a)/O(G).
- 3. If *R* is a ring, then prove that for all $a, b \in R$
 - (a) AO = OA = 0.
 - (b) a(-b) = (-a)b = -(ab).

- 4. If R is a commutative ring with unit element and M is an ideal of R, then prove that M is a maximal ideal of R if $\frac{R}{M}$ is a field.
- 5. If V is the internal direct sum of $U_1, U_2, ..., U_n$, then prove that V is isomorphic to the external direct sum of $U_1, U_2, ..., U_n$ where $U_1, U_2, ..., U_n$ are subspaces of the vector space V.
- 6. If V is a finite dimensional inner product space and W is a subspace of V, then prove that $W^{\perp})^{\perp} = W$.
- 7. If $f(x) \in F[x]$ is of degree $n \ge 1$, then prove that there is an extension *E* of *F* of degree atmost *n* ! in which f(x) has *n*-roots.
- 8. If $T \in A(V)$ and $S \in A(V)$ is regular, then prove that STS^{-1} and T have the same minimal polynomial

PART B — $(5 \times 10 = 50 \text{ marks})$

Answer any FIVE questions.

- 9. State and prove Lagrange's theorem.
- 10. If G is a finite group, then prove that $C_a = O(G) / O(N(a))$.
 - $\mathbf{2}$

PG-377

- 11. Prove that the ideal $A = (a_0)$ is a maximal ideal of the Euclidean ring *R*. If and only if a_o is a prime element of *R*.
- 12. If *V* is a finite dimensional vector space and if *W* is a subspace of *V*, then prove that *W* is finite dimensional, $\dim W \le \dim V$ and $\dim V/W = \dim V \dim W$.
- 13. If V and W are of dimensions m and n respectively over F, then prove that Hom(V, W) is of dimension mn over F.
- 14. If *F* is of characteristic '*O*' and if *a*, *b* are algebraic over *F*, then prove that there exists an element $C \in F(a, b)$ such that F(a, b) = F(c).
- 15. (a) Prove that element $\lambda \in F$ is a characteristic root of $T \in A(V)$ if and only if there exists some $v \neq 0$ in V, $vT = \lambda v$.
 - (b) If $\lambda \in F$ is a characteristic root of $T \in A(V)$, then prove that λ is a root of the minimal polynomial of *T*.
- 16. Prove that there exists a subspace W of V invariant under T such that $V = V_1 \oplus W$.

3

PG-377