VI Semester B.Sc. Examination, May/June 2013 (Semester Scheme) PHYSICS – VII Statistical Physics and Solid State Physics

Time: 3 Hours

Instructions: 1) Part – A: Answer any five of the following (5×6=30).
2) Part – B: Answer any four of the following (4×5=20).
3) Part – C: Answer any five of the following (5×2=10).

PART-A

Answer any five of the following : (5×6=30			
1.	Arr	rive at Maxwell-Boltzmann distribution function.	6
2.	Obtain an expression for the electrical conductivity of metals based on free electron theory.		6
3.	a)	What are nano materials ?	
	b)	Mention any three properties and applications of nano materials.	(1+5)
4.	a)	Give the theory of Compton effect.	
	b)	Under what condition the Compton shift is maximum ?	(5+1)
5.	a)	Distinguish between continuous X-rays and characteristic X-rays.	
	b)	State Moseley's law. How is the periodic table modified using the Mose law ?	ley's (3+3)
6.	Dis	scuss the classification of liquid crystals with necessary diagram.	6
7.	a)	State and explain Bloch Theorem.	
	b)	Distinguish between type 1 and type 2 superconductors.	(3+3)
8.	a)	What is Meissner effect ? Show that the magnetic susceptibility of a super conductor is -1 .	
	b)	Explain the concept of persistence of current.	(4+2)
			P.T.O.

Max. Marks: 60

PART-B

-2-

Answer any four of the following. Use the following data wherever necessary.

(4×5=20)

 $N = 6.66 \times 10^{26} \text{ kg-mole}, e = 1.6 \times 10^{-19} \text{ C}$

$$h = 6.63 \times 10^{-34} \text{ Js}$$
 me = $9.1 \times 10^{-31} \text{ kg}$

 $1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg}$

- 9. Sodium has 2.5×10^{28} free electrons per.cm³. Calculate the Fermi energy. Effective mass of electron = 1.2 me.
- 10. A copper wire of cross sectional area 4×10⁻⁶ m² carries a steady current of 40 A. Assuming one free electron per atom, calculate
 - i) The density of free electrons and
 - ii) The drift velocity of the electron.

Given density of copper = 8.92×10^3 kg m⁻³ and atomic weight of copper = 63.5 amu.

- Calculate the glancing angle on the plane (110) of a cubic rock-salt (a= 0.281 nm) corresponding to the second order diffraction maximum for the X-rays of wavelength 0.071 nm.
- 12. If the plane cuts the crystallographic axes at 1a, 2b and 3c, what are the Miller indices of the plane ?
- Calculate the Hall voltage developed in a crystal of thickness 0.6 mm when a magnetic field of 0.8 Tesla is applied. The current density is 200 Ampers/m² and electron density is 2×10²³ m⁻³.
- 14. A specimen of pure germanium at 300 k has a charge carrier density of 2.5×10¹⁹ m⁻³. It is doped with donor impurity at the rate of one impurity atom for every 10⁶ atoms of germanium. All the impurity atoms may be assumed to be ionized. The density of germanium atoms is 4.2×10²⁸ atoms m⁻³. Find the resistivity of the doped germanium if the electron mobility is 0.36 m²/volt-second.

PART-C

Answer any five of the following:

15. a) Is electron a Boson ? Explain.

b) Do gold particles of all sizes look yellow ? Justify.

4

- c) Miller indices represent not a single plane but a set of parallel planes. Why?
- d) Is water an anisotropic phase ?
- e) Why semiconductors are tetravalent? Explain.
- f) X-ray production is the converse of photoelectronic phenomenon. Explain.
- g) What is meant by potential barrier across a p-n junction?
- h) If the current is passed through a superconductor does it remain for ever ? Explain.