M.G.K.V.P. University, Varanasi - 2017 Mathematics - I (BCA 110)

Note: Attempt any five questions. All questions carry equal marks.

1. (a) For the four sets A, B, C and D, prove that $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$

8

http://www.mgkvponline.com

- (b) 900 students appeared for two papers in Mathematics, 740 students passed in paper I and 660 passed in paper II. If 640 students passed in both, find the number of students who failed in both.
- 2. (a) Prove that the relation R defined on the set of positive integers $(x, y) \in R$ if x y divisible by 5 is an equivalence relation.
 - (b) If $f: A \to B$ and $g: B \to C$ be one-to-one onto mappings, prove that gof is also one-to-one onto and $(g \circ f)^{-1} f = 10g^{-1}$.
- 3. (a) A relation R on the set Z of integers is defined as follows: 7
 m R n ⇔ m + n is even all m, and n ∈ z, Is R a partial order relation?
 Prove a give a counter example.
 - (b) Let $A = \{1, 2, 3, 4\}$ and consider the relation. $R = \{(1, 1), (2, 1), (2, 2), (3, 1), (3, 1), (3, 3), (3, 4), (4, 4)\}$. Show that R is a partial ordering and draw its Hasse diagram.
- 4. (a) Consider the subsets {2, 3}, {4, 6} and {3, 6} in the poset {(1, 2, 3, 4, 5, 6), 1}. Find for each subset if exists.
 - (i) Upper and lower bound,
 - Greatest lower bound and least upper bound.
 - (b) In a distributive lattice if an element has a complement, then prove that this complement is unuque.
 7
- 5. (a) If $z = x^2 \tan^{-1}(y/x) y^2 \tan^{-1}(x/y)$, prove that: $\frac{\partial^2 z}{(\partial y \partial x)} = \frac{x^2 y^2}{x^2 + y^2}.$
 - (b) Divide 24 into three parts such that the continued product of the first, the square of the second and the cube of the third may be a maximum.
- 6. (a) Find the equation of the plane which contains the line of intersection of the planes x + y + z = 3 and 2x y + 3z = 4 and parallel to the line joining the points (2, 1, 1) and (3, 2, 4).
 - (b) Find the equation of the sphere having the circle $x^2 + y^2 + z^2 + 10y 4z 8 = 0$, x + y + z = 3 as a great circle.
- 7. (a) Evaluate $\iint (x^2 + y^2) X dn dy$ over the positive quadrant of the circle $x^2 + y^2 = a^2$.
 - (b) Find the volume of the region bounded by the surface $y = x^2$; $x = y^2$; z = 0 and z = 3.